Rakudo and NQP Internals Exercises

Jonathan Worthington

Copyright (© Edument AB 2013
September 16, 2013

1 Exercise 1

This exercise will get you to do some simple tasks in NQP, to get used to the
basic syntax.

1.1

Hello, world

Easiest thing ever:

say(’Hello, world’);

Now get it wrong:

say ’Hello, world’;

Notice how you will be complained at. Loudly.

1.2

- W e

1.4

Variables

Bind a value to a scalar.

Use say to output it.

Try to use assignment instead. Observe that it fails.

Declare an array. Use indexing, like @a[0], to bind and access elements.
Note that in Perl 6, sigils are invariant; $a[0] complains about an unde-
clared $a!

Try binding an array literal, like [1,2,3] to an @arr variable. Now do
the same to a $scalar variable. Note how indexing works just fine with
both.

Declare a hash variable, %h. Try out both literal indexing (%h<key>) and
the curly syntax (%h{’key’}).

Loops

. Use for to iterate over an array one element at a time, first using $_, then

with a pointy block (for @ -> $val { ... }).

Can you iterate over an array two elements at a time? Try it!

Iterate over a hash variable, printing out the .key and .value of each
pair in the hash.

Subroutines

Implement a recursive factorial routine, sub fac. If you get it right, fac(10)
will return 3628800.

1.5

1.

1.6

1.7

Classes

Declare a BarTab class. Give it a scalar attribute for the table number
and an array attribute for items.

Write a method table that returns the table number.

Write a method add_order that takes an item name and a price. Push a
hash onto the items attribute with the keys name and price.

Write a method render_tab that produces a string describing what’s on
the tab (items, price for each item, total)

Create a tab (BarTab.new(table => 42)). Check the table method
returns the 42. Add some items and make sure things work. You may
even like to use plan(...) and ok(...) - built in to NQP - to make these
tests!

Multi-methods

Add a proto method for add_order. Then make the current add_order
a multi-method (just add the keyword multi before it). Ensure that all
still works.

Add another multi candidate to add_order that takes 3 arguments, the
third being a quantity. For this candidate, add an item hash to the array
the specified number of times.

If time allows. ..

. Write a lexical class Item (a class declared with my inside of your BarTab

class. Give it attributes for name and price, and methods to access them.
Refactor your code to use this inner class, so you have an array of Item
rather than an array of hashes.

Refactor your code so that instead of an item appearing in the items list
multiple times if it is ordered more than once, each item has a quantity.
(You may like to switch to using a hash instead of an array in your BarTab,
so you can look up items by name and just update the quantity of ones
that were already ordered.)

2 Exercise 2

2.1 Grammar

In plain text form, a log from the Perl 6 IRC channel looks like this:

14:30 colomon r: say 2*xx100
14:30 camelia rakudo 624ff7: OUTPUT1267650600228229401496703205376
14:30 colomon sweet!!!!!

14:30 TimToady bet that took a lot of electroms...

That is, a time, a nick, and some text. Start out by writing a grammar that
parses any number of lines like this, capturing the time, nick and text. Go over
the match object and check it has the right output.

2.2 Actions

Declare an Utterance class to represent a line of chat. It should have three
attributes: time, nick, and text, along with methods that access them. You can
rely on the default constructor for setting them.

Now write an actions class that builds an instance of this class for each line
of text. Finally, add a TOP action method that produces an array.

2.3 Bonus Task: Actions

As well as normal chat lines, there are action lines, which have a * before the
nick:

07:26 moritz r: say (1, 2, 3).map({()}).flat.perl
07:26 camelia rakudo 099f0b: OUTPUT().list
07:26 * moritz wonders if .grep itself flattens

Add support for parsing this, and recording it in the Utterance as an extra
attribute.

2.4 Bonus Task: Collect lines

Replace the text attribute in Utterance with an array of lines. Then, if a single
nick speaks multiple consecutive lines of text, put them into a single array and
create a single instance of Utterance for them.

3 Exercise 3

3.1 Familiarization

Take the SlowDB implementation. Review the code we’ve seen so far, and run
a few simple INSERT and SELECT queries.

3.2 DELETE

Implement functionality for deleting rows. Examples of DELETE queries are:

DELETE WHERE name = ’jnthn’
DELETE WHERE name ’jnthn’, is_action =1

That is, there can be one condition or a conjunction of conditions separated
by commas.

3.3 UPDATE

Implement functionality for updating existing rows. Examples of UPDATE queries
are:

UPDATE WHERE type = ’stout’ SET tasty = 1
UPDATE WHERE type ’stout’ SET tasty = 1, dark =1
UPDATE WHERE type = ’stotu’ SET type = ’stout’

3.4 Refactor

Now there are three things that support WHERE clauses: SELECT, DELETE and
UPDATE. Can you factor that out?

3.5 If you’re working really fast. ..

Extend the range of operators usable in a WHERE clause to include !'=, <, <=, >
and >=.

4 Exercise 4
Create a minimal PHP compiler that simply supports echo statements:

echo "<h2>PHP is fun!</h2>";
echo "<blink>So 1990s!</blink>";

4.1 The basics

1. Create a new NQP source file, and use NQPHLL.

2. Create subclasses of HLL: :Grammar, HLL: : Actions and HLL: :Compiler.

3. Write a MAIN sub that, just like the Rubyish one, sets up the compiler
object and calls command line. Verify that running your program with
no arguments now enters the REPL, but that attempting to run any code
fails because the grammar has no TOP rule.

4. Do Just Enough in the grammar to be able to parse a list of echo state-
ments. The final one need not be followed by a semicolon. Run the REPL
again and ensure your grammar parses, and that the error you get is be-
cause no AST is being built.

5. Write action methods to make QAST. Make sure your program now runs.

4.2 Going further

Time to be more PHP-ish!

1. The echo statement doesn’t automatically put a new line at the end of
the output, so use the print op instead of say.

2. Turn on parsing of backslash sequences in your quote parser. This is done
by <quote EXPR: ’:q’, ’:b’> (note the :b). Make sure that you can
now echo "stuff\n" with a newline on the end or not.

3. It is also possible to use echo("with parentheses"). Implement it.

5 Exercise 5

In this exercise, you'll add a few features to PHPISH, in order to explore the
QAST nodes we’ve been studying. By the end, you should be able to run the
following program:

5.1 Values

So far, echo can only handle a string argument. It’s time to change that! Add
a value protoregex, and candidates for parsing integers, floating point numbers
and strings. Be sure that your string token looks as follows:

token value:sym<string> { <7["]> <quote_EXPR: ’:q’, ’:b’> }

So that you’ll be able to handle the \n. Add the appropriate action methods
(remembering that the protoregex itself doesn’t need one). Update the echo
rule and action method to take a value, not just a string. Ensure you can run
the same things as before, and also:

echo 42;
echo 1.5;

5.2 Operators

Study the operator precedence parsing material. Set up two precedence levels,
one for additive and one for multiplicative operators. Add the four usual arith-
metic operations (+, -, *, /) as in Rubyish. Also add . for string concatenation
(the NQP op for that is called concat).

Next, add a candidate to the term protoregex, which should call value to
parse a value. This needs a matching action method.

Finally, update echo to parse an EXPR instead of a value. You should now
be able to run:

echo 2 * 5 . "\n";

5.3 Variables

Curiously enough, PHP locals have similar declaration semantics to Ruby: first
assignment declares. There are some more interesting rules surrounding globals,
but we’ll put those aside for now.

First, add a precedence level for assignment, and an assignment operator
that is mapped to the bind op. Also, add a grammar rule and action method
so that an expression can serve as a statement. After this, you should be able
to parse:

1 =1

However, it’s nonsense so it will give an error during code generation.

We're going to need to care about block structure a little more now. Update
your TOP grammar rule to declare a $*CUR_BLOCK like we did in Rubyish, and
do the matching update to the action method.

Next, implement variable parsing. Once again, you can take inspiration from
what we did in Rubyish, but the variable naming rules are as follows:

e A variable starts with the $ sign, followed by the name of the variable

e A variable name must start with a letter or the underscore character (not
a number)

e A variable name can only contain alphanumeric characters and under-
scores (A..Z, a..z, 0.9, and)

Also remember that PHP is not line-oriented. Once done, you should be able
to execute the following program:

$emotion = "awesome";

echo "PHP is " . $emotion . "\n";
$emotion = $emotion . "st";

echo "Perl 6 is " . $emotion . "\n";

5.4 Bonus task: functions

Implement functions with parameters and argument passing! Once done, you
should be able to run:

function greet($name) {
echo "Good day, " . $name . "\n";
}

greet ("Lena") ;

You can steal some inspiration from the Rubyish example. However, you’ll
also need to take some care to make sure that function declarations do not need
a semicolon after them.

6 Exercise 6

This exercise is to fill time at the end of the first day, if we somehow make it
through everything else! Here are some ideas of what you could do.

6.1 Basic numeric relational operators

For now, we’ll ignore the type juggling done by PHP’s relational operators to
cope with both strings and numerics, and just handle the numeric case. PHP
has two precedence levels for comparision operators:

Tighter level: < <= > >=
Looser level: == I=

These are simultaneously looser than additive and tighter than assignment.
No action methods should be needed, since :op<...> can be used in the
<0(...)>.

6.2 if/else if/else

Now that we have relational operators, it makes sense to implement if state-
ments. Start out simple:

if ($a > $b) {
echo "a is bigger than b";

3

Then build up to having else:
if ($a == $b) {

echo "a is the same as b";

}
else {

echo "a and b differ";
}

Finally, add elseif:

if ($a > $b) {

echo "a is bigger than b";
} elseif ($a == $b) {

echo "a is equal to b";
} else {

echo "a is smaller than b";

3

To better understand how elseif can be handled, read the applicable code
in NQP’s grammar and actions. Search for statement_control:sym<if> in

both.

Last but not least, you may even like to try implementing the dangling form:

if ($a > $b)
echo "a is bigger than b";

It appears that there are other wonderful irregularities to be had in the
elseif and else forms too, involving colons and who knows what. But it’s
probably better to go drinking if you got this for. Or, do...

6.3 while loops

Parse and implement while loops:

$i = 1;

while ($i <= 10) {
$i = $i + 1;
echo $i;

}

Congratulations. Your PHP implementation is now Turing Complete, and
all is now possible with it!

(Aside: It was actually Turing complete sooner, since recursive functions
and while loops are equivalent.)

10

7 Exercise 7

In this exercise, you’ll add basic support for classes, methods, the new operator
and method calls to PHPISH. When you’re done, you should be able to run:

class Greeter {
function greet($who) {
echo "Greetings, " . $who . "\n";
}
}
$g = new Greeter();
$g->greet ("Anna");

7.1 First, a meta-object

Create a simple meta-object, much like the Rubyish one, that can support
adding and looking up methods.

7.2 Next, parse classes and generate code for them

The basics are similar to Rubyish: functions within a class become methods on
the class. Thus, you can steal the approach, making sure to use PHP syntax for
it.

7.3 Add the new term

This is so similar, you can steal it from Rubyish almost directly. Just be aware
of the different whitespace rules (line breaks aren’t significant).

7.4 Add method calls

Once again, a similar approach works, modulo syntax: the method call operator
is =>. After adding this, you should be able to run the program at the start of
this section - but it will still fail. The problem is that we did not make methods
accept the invocant (the object they are called on).

7.5 Support $this

The first parameter of a method is the object it is called on. In PHP, this is
assigned to $this. Therefore, when in a class, ensure that a function always
takes a $this parameter first.

7.6 Well, that was a lot of copy-paste...

Yup. Most class-based object systems are relatively similar at this level. Still,
hopefully being able to put it together for yourself will have made the whole
thing seem less magical!

11

By the way, now you support $this, this should work too:

class Greeter {
function greet($who) {
$this->greet_custom("Hej", $who);

}

function greet_custom($greeting, $who) {
echo $greeting . ", " . $who . "\n";

}

}
$g = new Greeter();
$g->greet ("masak");

12

8 Exercise 8

In this exercise, you’ll extend the PHPISH object system a little. ..or maybe a
lot.

8.1 Method cache

First, create a new PHP class, manually, in NQP, with a method. It will look
something like this:

my $c := PHPClassHOW.new_type(:name(’Foo’));
$c.HOW.add_method($c, ’bar’, -> $obj { 1 });

Time how long 100,000 method calls take.

my $start := nqgp::time_n();
my int $i := O;
while $i < 100000 {
$obj.bar();
$i++;
}
say(nqp::time_n() - $start);

Add a compose method to your PHPClassHOW. In it, use the setmethcache
instruction. You can use % !methods to serve as the method cache hash for now.
Add a call to your compose method. Repeat the timings. It should be faster
with the cache (on the exercise writer’'s machine, 0.194s without and 0.066s
with).

Now, update the code in the statement: sym<class> action method so that
the compose method is called after all the methods have been added.

8.2 Inheritance

Here’s the example we want to make work:

class Dog {
function bark() { echo "woof!\n"; }
function smell() { echo "terrible\n"; }
}
class Puppy extends Dog {
function bark() { echo "yap!\n"; }

}
$d = new DogQ);
$d->bark () ;

$d->smell();

$p = new PuppyQ;
$p->bark();
$p->smell();

13

First, start out with the parsing. It’s a very small addition to parsing a
class declaration, to optionally accept an extends keyword. Once it parses, you
should be able to run the program, but it will fail to do the final call to smell,
as that is inherited and we don’t have inheritance yet.

Next, update the action method for a class. Before the code for adding
methods, if there is an extends, add a call on the meta-object to add_parent
(which you will write in a moment). To look up the parent, use a QAST: :Var
node with the scope set to lexical.

You should now get an error saying that add_parent is not yet implemented.
From here, all the work will be in the PHPClassHOW.

Add an attribute @!parents. Implement an add_parent that will add to this
array, but only if there is not a parent there already. If there is, then nqp: :die
about it. This should clear up the error, but again, the final call to smell does
not yet work.

Next, update find_method. If the method to search for is not in %!methods,
it should look at the method tables of all parents. For this, you will need to
implement methods parents and method table to enable you to get at the
required information from base classes.

By this point, things should work - but not efficiently! For that, you should
now also update the method cache. You can make sure you did so correctly by
adding a debugging statement in your find method, which should not be called
if the cache is working.

8.3 If time allows: interfaces

In PHP, an interface represents a demand that a certain list of methods are
provided by any class that declares it implements it. For example, given:

interface iBarkable {
function bark();

}
Then this class is fine:

class Dog implements iBarkable {
function bark() { echo "woof!\n"; }
function smell() { echo "terrible\n"; }

While this should cause an error:

class BadDog implements iBarkable {
function smell() { echo "terrible\n"; }

3

Since it is missing the bark method. Your goal is to implement this feature.
Here are a few hints.

14

. Start by adding parsing for interfaces and method demands inside of them.

2. Once that works, write a PHPInterfaceHOW that can be used to keep a list

of required methods. Use the Uninstantiable REPR, since you should
not be allowed to make an instance of an interface.

. Add the implements keyword parsing to class declarations. Set up the
action methods to call an add_interface method on the PHPClassHOW,
which should add the interface to an @!interfaces attribute.

. You should now find that the above examples both compile, but the second
one is not rejected. To make this happen, in the PHPClassHOW’s compose
method, write code that gets the list of demanded methods for each of the
interfaces and check that the class provides them.

15

9 Exercise 9

This exercise will take you on a short tour of the regex implementation.

9.1 Parsing and actions

Run the following:
ngp --rxtrace -e "/a+/"

Now, let’s try to make sense of it.

In the NQP repository, open src/NQP/Gramamr .ngp and locate quote: sym</
/>. Observe that it calls LANG, which does a language switch. This can be found
in src/HLL/Grammar.nqp. Notice how it uses the braid, and switches actions
as well as language type.

Next, open src/QRegex/P6Regex/Grammar.nqp and locate nibbler. Try
to pick out the call to termaltseq. Look at termaltseq itself, then look in
the Actions file for its action method. Work your way down to termish, and
try to understand what it’s doing here: handling the relative precedence of the
different alternations and conjunctions.

Next, look down towards atom. Notice how the a from our regex is parsed
here. Then look back up to quantified atom. Read the action method and see
how the atom is placed into the quantifier node.

You may wish to explore how some other constructs are handled.

9.2 Exploring embedded code blocks

In the NQP grammar, look for NQP: :Regex. Notice that it is a subclass of the
basic QRegex: :P6Regex: :Grammar you were just looking at. This is part of
the power of grammars really being classes: we can subclass them to specialize
them.

Let’s consider how /[a { say(’here’) }]+/ishandled. This is interesting,
as we start out in NQP, then parse regex syntax, then end up back parsing NQP
code again inside the block. Locate assertion:sym<{ }>, and then look at
codeblock. Enjoy the relative simplicity of what is going on!

Take a look at the codeblock action method, in NQP: :RegexActions. Can
you work out what is going on? Ask your teacher, or those around you, if not!

9.3 Exploring NFAs

The saved form of an NFA is stored within a rule’s code object. Therefore, we
can obtain it and get back to an object as follows:

grammar Example {
token t { ’foo’ }
}

16

my $t := ngp: :findmethod (Example, ’t’);
my $nfa := QRegex::NFA.from_saved($t.NFAQ));

But what to do with it? Next, open up src/QRegex/NFA.ngp. Look at the
list of edge type constants near the top. The overall structure of an NFA is a
list of lists. The outer lists represent states - nodes in a graph. Each node is
made up of a list of its outgoing edges, which are represented by 3 values:

e An action, which is one of the edge type constants at the top of NFA.nqp
e An argument to the action
e The index of the state to go to next if we match

We can write some code to dump this:

my $i := 0;

for $nfa.states -> Qedges {
say("State $i");
for QGedges -> $act, $arg, $to {

say (" $act ($arg) ==> $to");

}

$i++;
}

For our simple example we get:

State 0
State 1

2 (102) ==> 2
State 2

2 (111) ==> 3
State 3

2 (111) ==> 0

Edge type 2 means codepoint, and here the argument is the character code
that we should match if we’re to go to the next state. See how we start in state
1, and reaching state 0 is success.

Experiment with some different things inside the token to see what the NFA
looks like. Here are some ideas.

a+
<[abc]l>
<[abc]>*
<foo>7
\w

11 abc
:iat

17

