
Rakudo and NQP Internals
The guts tormented implementers made

Jonathan Worthington

c© Edument AB

September 17, 2013

About This Course

Perl 6 is a large language, incorporating many features that are
demanding to implement correctly.

It’s easy for such a software project to be drowned by unmanaged
complexity. Earlier phases of the Rakudo and NQP projects have
suffered in this way, as we learned - the hard way - about the
complexities that arose and could spread unchecked over the

implementation.

This course will teach you how to work with Rakudo and NQP
internals. Encoded in their design is a wealth of learning, built up

over years, about how (and how not) to write a Perl 6
implementation. Thus, this course will also teach you why things

are the way they are.

About The Teacher

Computer Science background

Chose to travel the world and help implement Perl 6 instead
of doing a PhD

There’s more than one way to get “Permanent head Damage”
:-)

Somehow got hired at Edument AB along the way, as a
teacher/consultant

Rakudo Perl 6 core developer since 2008

Architect of 6model, MoarVM and various aspects of NQP
and Rakudo

Course overview - Day 1

The eagle’s eye view: Compilers, and the NQP/Rakudo
Architecture

The NQP Language

The compilation pipeline

QAST

Exploring nqp:: ops

Course overview - Day 2

6model

Bounded Serialization and Module Loading

The regex and grammar engine

The JVM backend

The MoarVM backend

The eagle’s eye view

The eagle’s eye view
Compilers, and the NQP/Rakudo Architecture

What compilers do

Compilers are really “just” translators

Translate a high level language (such as Perl 6) into a low level
one (such as JVM bytecode)

Take flat input (text) and produce flat output (text or binary), but
the insides are rich in data structures

Dealing with stuff as strings is, generally, a last resort

What runtimes do

To run a language like Perl 6 involves more than just translating it
to low level code. Additionally, it needs runtime support to

provide:

Memory management

I/O, IPC, OS interaction

Concurrency

Dynamic optimization

Building the things we need to build the thing

Various attempts have been made to build Perl 6 out of existing
compiler construction technologies. Early designs for the compiler

were at least partly based on conventional assumptions.

Such attempts were informative, but haven’t worked out too well
in the long run.

Perl 6 presents some interesting challenges. . .

Perl 6 is parsed using Perl 6

The Perl 6 standard grammar is written in Perl 6. It depends on. . .

Transitive longest token matching (we’ll see more on this
later)

Being able to switch back and forth between languages (main
language, regex language, quoting language. . .)

Being able to derive new languages dynamically (new
operators, custom quoting constructs)

Seemless integration between bottom-up expression parsing
and top-down parsing for larger constructs

Keeping various bits of state around for awesome error
reporting

All of which essentially represent a new paradigm in parsing.

Not statically typed or dynamically typed

Perl 6 is a gradually typed language.

my int $distance = distance-between(’Lund’, ’Kiev’);

my int $time = prompt(’Travel time: ’).Int;

say "Average speed: { $distance / $time }";

We want to make use of knowing that $distance and $time are
native integers to produce better code than if we had no

knowledge of the types (should just be a native division instruction
in the output code).

Compile-time and runtime blur

Runtime can do some compile-time:

eval slurp @demos[$n];

Compile-time can do some runtime:

my $comp-time = BEGIN now;

Notice how the compile time computation’s result must be
persisted until runtime, which may have a process boundary

between them!

NQP as a language

The Perl 6 grammar clearly needed to be expressed in Perl 6. This
would in turn need to integrate into the rest of the compiler.
Writing the whole lot in Perl 6 thus followed fairly naturally.

However, full-blown Perl 6 is large, and writing a good optimizer
for it takes a lot of work.

Therefore, the NQP (Not Quite Perl 6) language was born: a
small subset of Perl 6 designed for implementing compilers. NQP

and Rakudo are mostly written in NQP.

NQP as a compiler construction toolchain

Peeking inside the NQP src directory reveals that there’s a lot
more than just NQP itself, however.

NQP, how, core: these contain the NQP compiler,
meta-objects (which specify how NQP’s classes and roles
work) and built-ins

HLL: common infrastructure for building a high-level
language compiler, shared between Rakudo and NQP

QAST: nodes of the Q Abstract Syntax Tree, a tree notation
representing the semantics of a program (that is, what will it
do when executed)

QRegex: objects involved in parsing and executing regexes
and grammars

vm: virtual machine abstraction layers, since NQP and
Rakudo can run on Parrot, the JVM, MoarVM. . .

QAST

QAST trees are one of the most important data structures in NQP
and Rakudo internals.

An Abstract Syntax Tree represents what a program does when
executed. It is abstract in the sense of being abstracted away from

the particular language that a program was written in.

QAST

Different QAST nodes represent things like:

Variables

Operations (arithmetic, string, invocation, etc.)

Literals

Blocks

Note that there are no QAST nodes for things like classes, since
those are compile-time declarations rather than runtime execution.

The nqp:: op set

Another important part of the compiler toolchain is the nqp::op
instruction set. There are two ways in which you will encounter it,

and it is critical to understand the difference!

You can use them in NQP code, in which case you are saying that
you wish to execute the operation at that point in your program:

say(nqp::time_n())

The exact same instruction set is also used in a QAST tree that
represents a program that is being compiled:

QAST::Op.new(

:op(’call’), :name(’&say’),

QAST::Op.new(:op(’time_n’))

)

Bootstrapping in a nutshell

One may wonder how NQP can ever be compiled when it’s written
almost entirely in NQP.

Inside each of the vm subdirectories is a stage0 directory. It
contains a compiled NQP (PIR files on Parrot, JAR files on JVM,

etc.) We then:

Thus, the NQP you make test on is one that can recreate itself.

Every so often, we update the stage0 with the latest version

How Rakudo uses NQP

Rakudo itself is not a bootstrapping compiler, which makes its
development a bit easier. Most of Rakudo is written in NQP. This

includes:

The heart of the compiler itself, which parses Perl 6 source,
builds up QAST, manages declarations and does various
optimizations

The meta-objects, which specify how different kinds of type
(classes, roles, enums, subsets) work

The bootstrap, which pieces together enough of the Perl 6
core types for us to be able to write the built-in classes, roles
and routines in Perl 6

Thus, while some of Rakudo is accessible if you know Perl 6,
knowing NQP - both as a langauge and as a compiler toolchain - is

the gateway to working with most of the rest of Rakudo.

The NQP language

The NQP language
It’s Not Quite Perl 6, but quite OK for building Perl 6

Design goals

NQP is designed to be. . .

Ideal for writing compiler-related things in

Almost a subset of Perl 6

Much simpler to compile and optimize than Perl 6

Of note, it avoids:

Assignment

Flattening and laziness

Operators being multi-dispatch (so, no overloading)

Having lots of built-ins

Literals

Integer literals

0 42 -100

Floating point literals (no Rat in NQP!)

0.25 1e10 -9.9e-9

String literals

’non-interpolating’ "and $interpolating"

q{non-interpolating} qq{and $interpolating}

Q{not even backslashes}

Sub calls

In NQP, these always need the parentheses:

say(’Mushroom, mushroom’);

Like in Perl 6, this adds an & to the name and does a lexical
lookup of the routine.

However, there is no list-op calling syntax:

plan 42; # "Confused" parse error

foo; # Does not call foo; always a term

This is perhaps the most common NQP beginner mistake.

Variables

Can be my (lexical) or our (package) scoped:

my $pony;

our $stable;

The usual set of sigils are available:

my $ark; # Starts as NQPMu

my @animals; # Starts as []

my %animal_counts; # Starts as {}

my &lasso; # Starts as NQPMu

Dynamic variables are also supported:

my @*blocks;

Binding

NQP does not offer the = assignment operator. Only the :=
binding operator is provided. This frees NQP from the complexity

of Perl 6 container semantics.

Here’s a simple scalar example:

my $ast := QAST::Op.new(:op(’time_n’));

Binding and arrays

Note that binding has item assignment precedence, so you can
not write:

my @states := ’start’, ’running’, ’done’; # Wrong!

Instead, this must be expressed as one of:

my @states := [’start’, ’running’, ’done’]; # Fine

my @states := (’start’, ’running’, ’done’); # Same thing

my @states := <start running done>; # Cutest

Natively typed variables

At present, NQP doesn’t really support type constraints on
variables. The exception is that it will pay attention to native

types.

my int $idx := 0;

my num $vel := 42.5;

my str $mug := ’coffee’;

Note: in NQP, binding is used on native types! This is illegal in
Perl 6, where natives can only be assigned. It’s all rather artificial,

though, in so far as an assignment to a native type in Perl 6
actually compiles down to the nqp::bind(...) op!

Control flow

Most of the Perl 6 conditional and looping constructs also exist in
NQP. As in real Perl 6, parentheses are not required around the
conditional, and pointy blocks can be used also. Loop constructs

support next/last/redo.

if $optimize {

$ast := optimize($ast);

}

elsif $trace {

$ast := insert_tracing($ast);

}

Available: if, unless, while, until, repeat, for

Missing: loop, given/when, FIRST/NEXT/LAST phasers

Subroutines

Declared much like in Perl 6, however the parameter list is
mandatory even if taking no parameters. You may either return

or use the last statement as an implicit return value.

sub mean(@numbers) {

my $sum;

for @numbers { $sum := $sum + $_ }

return $sum / +@numbers;

}

Slurpy parameters are also available, as is | to flatten argument
lists.

Note: parameters can get type constraints, but as with variables,
only the native types count at present. (Exception: multiple

dispatch; more later.)

Named arguments and parameters

Named parameters are supported:

sub make_op(:$name) {

QAST::Op.new(:op($name))

}

make_op(name => ’time_n’); # Fat-arrow syntax

make_op(:name<time_n>); # Colon-pair syntax

make_op(:name(’time_n’)); # The same

Note: NQP does not have Pair objects! Pairs - colonpairs or
fat-arrow pairs - only make sense in the context of an argument list.

Blocks and pointy blocks

Pointy blocks are available with the familiar Perl 6 syntax:

sub op_maker_for($op) {

return -> *@children, *%adverbs {

QAST::Op.new(:$op, |@children, |%adverbs)

}

}

As can be seen from this example, they have closure semantics.

Note: Plain blocks are also available for use as closures, but do
not take an implicit $ argument like in Perl 6!

Built-ins and nqp:: ops

NQP has relatively few built-ins. However, it provides full access to
the NQP instruction set. Here are a few common instructions that

are useful to know.

On arrays

nqp::elems, nqp::push, nqp::pop, nqp::shift, nqp::unshift

On hashes

nqp::elems, nqp::existskey, nqp::deletekey

On strings

nqp::substr, nqp::index, nqp::uc, nqp::lc

We’ll discover more during the course.

Exception handling

An exception can the thrown using the nqp::die instruction:

nqp::die(’Oh gosh, something terrible happened’);

The try and CATCH constructs are also available, though unlike in
full Perl 6 you are not expected to smart-match inside of the

CATCH; once you’re in there, it’s considered that the exception is
caught (modulo an explicit nqp::rethrow).

try {

something();

CATCH { say("Oops") }

}

Classes, attributes and methods

Declared with the class, has and method keywords, as in Perl 6.
A class may be lexical (my) or package (our) scoped (the default).

class VariableInfo {

has @!usages;

method remember_usage($node) {

nqp::push(@!usages, $node)

}

method get_usages() {

@!usages

}

}

The self keyword is also available, and methods can have
parameters just like subs.

More on attributes

NQP has no automatic accessor generation, so you can’t do:

has @.usages; # Not supported

Natively typed attributes are supported, and will be efficiently
stored directly in the object body. Any other types are ignored.

has int $!flags;

Unlike in Perl 6, the default constructor can be used to set the
private attributes, since that’s all we have.

my $vi := VariableInfo.new(usages => @use_so_far);

Roles (1)

NQP supports roles. Like classes, roles can have attributes and
methods.

role QAST::CompileTimeValue {

has $!compile_time_value;

method has_compile_time_value() {

1

}

method compile_time_value() {

$!compile_time_value

}

method set_compile_time_value($value) {

$!compile_time_value := $value

}

}

Roles (2)

A role can be composed into a class using the does trait:

class QAST::WVal is QAST::Node does QAST::CompileTimeValue {

...

}

Alternatively, the MOP can be used to mix a role into an individual
object:

method set_compile_time_value($value) {

self.HOW.mixin(self, QAST::CompileTimeValue);

self.set_compile_time_value($value);

}

Multiple dispatch

Basic multiple dispatch is supported. It is a subset of the Perl 6
semantics, using a simpler (but compatible) version of the

candidate sorting algorithm.

Unlike in full Perl 6, you must write a proto sub or method;
there is not auto-generation.

proto method as_jast($node) {*}

multi method as_jast(QAST::CompUnit $cu) {

compile a QAST::CompUnit

}

multi method as_jast(QAST::Block $block) {

compile a QAST::Block

}

Exercise 1

A chance to get acquainted with the basic NQP syntax, if you
have not done so already.

Also a chance to learn how common mistakes look, so you can
recognize them if you encounter them in real work. :-)

Grammars

While in many areas NQP is quite limited compared to full Perl 6,
grammars are supported almost to the same level. This is because
NQP grammars have to be good enough to cope with parsing Perl

6 itself.

Grammars are a kind of class, and are introduced using the
grammar keyword.

grammar INIFile {

}

In fact, grammars are so like classes that in NQP they are
implemented by the same meta-object. The difference is what they

inherit from by default and what you put inside of them.

INI Files

As an initial, simple example, we’ll consider parsing INI files.

Keys with values, potentially arranged into sections.

name = Animal Facts

author = jnthn

[cat]

desc = The smartest and cutest

cuteness = 100000

[dugong]

desc = The cow of the sea

cuteness = -10

The overall approach

A grammar contains a set of rules, declared with the keywords
token, rule or regex. Really, they are just like methods, but

written in rule syntax.

token integer { \d+ } # one or more digits

token sign { <[+-]> } # + or - (character class)

More complex rules are made up by calling existing ones:

token signed_integer { <sign>? <integer> }

These calls to other rules can be quantified, placed in alternations,
and so forth.

Aside: grammars and regexes

At this point, you may be wondering how grammars and regexes
relate. After all, a grammar seems to be made up of regex-like

things.

There is also a regex declarator, which can be used in a grammar.

regex email { <[\w.-]>+ ’@’ <[\w.-]>+ ’.’ \w+ }

The key difference is that a regex will backtrack, whereas a
rule or token will not. Supporting backtracking involves keeping
lots of state, and for a complex grammar parsing a lot of input,

this would quickly use up large amounts of memory! Big languages
tend to avoid backtracking in their parsers.

Aside: regexes in NQP

NQP does provide support for regexes in the normal sense too, for
smaller scale things.

if $addr ~~ /<[\w.-]>+ ’@’ <[\w.-]>+ ’.’ \w+/ {

say("I’ll mail you maybe");

}

else {

say("That’s no email address!");

}

This evaluates to the match object.

Parsing entries

An entry has a key (some word characters) and a value (everything
up to the end of the line):

token key { \w+ }

token value { \N+ }

Together, they form an entry:

token entry { <key> \h* ’=’ \h* <value> }

The \h matches any horizontal whitespace (space, tab, etc.). The
= must be quoted, as anything non-alphanumeric is treated as

regex syntax in Perl 6.

Start at the TOP

The entry point to a grammar is the special rule, TOP. For now, we
look for the entire file to be lines containing an entry or simply
nothing.

token TOP {

^

[

| <entry> \n

| \n

]+

$

}

Note that in Perl 6, square brackets are a non-capturing group (the
Perl 5 (?:...)), not a character class.

Trying our grammar

We can try our grammar out by calling the parse method on it.
This returns a match object.

my $m := INIFile.parse(Q{

name = Animal Facts

author = jnthn

});

Iterating through the results

Each call to a rule yields a match object, and the <entry> call
syntax will capture it into the match object.

Since we matched many entries we get an array under the entry
key in the match object.

Thus, we can do loop over it to get each of the entries:

for $m<entry> -> $entry {

say("Key: {$entry<key>}, Value: {$entry<value>}");

}

Tracing our grammar

NQP comes with some built-in support for tracing where grammars
go. It’s not a full-blown debugger, but it can be helpful to see how

far a grammar gets before it fails. It is turned on with:

INIFile.HOW.trace-on(INIFile);

And produces output like:

Calling parse

Calling TOP

Calling entry

Calling key

Calling value

Calling entry

Calling key

Calling value

token vs. rule

When we use rule in place of token, any whitespace after an
atom is turned into a non-capturing call to ws. That is:

rule entry { <key> ’=’ <value> }

Is the same as:

token entry { <key> <.ws> ’=’ <.ws> <value> <.ws> } # . = non-capturing

We inherit a default ws, but we can supply our own too:

token ws { \h* }

Parsing sections (1)

A section has a heading and many entries. However, the top-level
can also have entries. Thus, it makes sense to factor this out.

token entries {

[

| <entry> \n

| \n

]+

}

The TOP rule can then become:

token TOP {

^

<entries>

<section>+

$

}

Parsing sections (2)

Last but not least here is the section token:

token section {

’[’ ~ ’]’ <key> \n

<entries>

}

The ~ syntax is cute. The first line is like:

’[’ <key> ’]’ \n

However, failure to find the closing] produces a descriptive error
message instead of just failing to match.

Actions

Parsing a grammar can happen using an actions class; its
methods have names matching some or all rules in the grammar.

The methods are called after a successful match of the
corresponding rule.

In the Rakudo and NQP compilers, actions construct QAST
trees. For this example, we’ll do something a little simpler.

Actions example: aim

Given an INI file like:

name = Animal Facts

author = jnthn

[cat]

desc = The smartest and cutest

cuteness = 100000

We’d like to use the actions class to build up a hash of hashes.
The top level hash will contain the keys cat and (the underscore
collecting any keys not in a section). The values are hashes of the

key/value pairs in that section.

Actions example: entries

Action methods take the match object of the just-matched rule as
a parameter. It is convenient to put it into $/ so we can use the

$<entry> sugar (which maps to $/<entry>).

class INIFileActions {

method entries($/) {

my %entries;

for $<entry> -> $e {

%entries{$e<key>} := ~$e<value>;

}

make %entries;

}

}

Finally, make attaches the produced hash to $/. This is so the TOP
action method will be able to retrieve it while building the top-level

hash.

Actions example: TOP

The TOP action method builds the top-level hash out of the hashes
made by the entries action method. While make attaches

something to $/, the .ast method retrieves what was attached to
some other match object.

method TOP($/) {

my %result;

%result<_> := $<entries>.ast;

for $<section> -> $sec {

%result{$sec<key>} := $sec<entries>.ast;

}

make %result;

}

Thus, the top-level hash gets the hashes produced by the entries
action method installed into it, by section name.

Actions example: parsing with actions

The actions are passed as a named parameter to parse:

my $m := INIFile.parse($to_parse, :actions(INIFileActions));

The result hash can be obtained from the resulting match object
using the .ast, as we already saw.

my %sections := $m.ast;

for %ini -> $sec {

say("Section {$sec.key}");

for $sec.value -> $entry {

say(" {$entry.key}: {$entry.value}");

}

}

Actions example: output

The dumping code on the previous slide produces output as follows:

Section _

name: Animal Facts

author: jnthn

Section cat

desc: The smartest and cutest

cuteness: 100000

Section dugong

desc: The cow of the sea

cuteness: -10

Exercise 2

A chance to have a little practice with grammars and actions.

The goal is to parse the text format of the Perl 6 IRC log; for
example, see http://irclog.perlgeek.de/perl6/2013-07-19/text

Another example: SlowDB

Parsing INI files is a nice introductory example, but feels a long
way from a compiler. As a step in that direction, we’ll build a
small, stupid, in-memory database with a query interpreter.

It should work something like this:

INSERT name = ’jnthn’, age = 28

[

result: Inserted 1 row

]

SELECT name WHERE age = 28

[

name: jnthn

]

SELECT name WHERE age = 50

Nothing found

The query parser (1)

We either parse an INSERT or SELECT query.

token TOP {

^ [<insert> | <select>] $

}

token insert {

’INSERT’ :s <pairlist>

}

token select {

’SELECT’ :s <keylist>

[’WHERE’ <pairlist>]?

}

Note that :s turns on auto-<.ws> insertion.

The query parser (2)

The pairlist and keylist rules are defined as follows.

rule pairlist { <pair>+ % [’,’] }

rule pair { <key> ’=’ <value> }

rule keylist { <key>+ % [’,’] }

token key { \w+ }

The interesting new syntax here is %. It attaches to the last
quantifier, and indicates that something (in this case, a comma)

should come between each of the quantified elements.

The square brackets around the comma literal are to ensure
<.ws> calls are generated as part of the separator.

The query parser (3)

Finally, here is how values can be parsed.

token value { <integer> | <string> }

token integer { \d+ }

token string { \’ <(<-[’]>+)> \’ }

Notice the use of the <(and)> syntax. These indicate the limits
of what should be captured by the string token overall, meaning

that the quote characters don’t end up being captured.

Alternations and LTM (1)

Recall the top rule:

token TOP {

^ [<insert> | <select>] $

}

If we trace the parsing of a SELECT query, we see something like
this:

Calling parse

Calling TOP

Calling select

Calling ws

Calling keylist

So how did it know not to bother trying <insert>?

Alternations and LTM (2)

The answer is Transitive Longest Token Matching. The
grammar engine builds an NFA (state machine) that, upon

encountering an alternation, sorts the branches by the number of
characters they would match. It then tries them longest first, not

bothering with those it realizes are impossible.

Alternations and LTM (3)

It doesn’t just look at a rule in isolation. Instead, it considers
subrule calls transitively. This means entire call chains that lead

to something impossible can be eliminated.

It is bounded by non-declarative constructs (such as a lookahead, a
code block, or a call to the default ws rule) or recursive subrule

calls.

A slight pain point

One annoyance we have is that our TOP action method ends up
looking like this:

method TOP($/) {

make $<select> ?? $<select>.ast !! $<insert>.ast;

}

It’s easy to see how this will become painful to maintain once we
add UPDATE and DELETE queries. It’s even more painful if the

grammar is subclassed.

Our value action method is similar:

method value($/) {

make $<integer> ?? $<integer>.ast !! $<string>.ast;

}

Protoregexes

The answer to our woes is protoregexes. They provide a more
extensible way to express an alternation.

proto token value {*}

token value:sym<integer> { \d+ }

token value:sym<string> { \’ <(<-[’]>+)> \’ }

Essentially, we introduce a new syntactic category, value, and
then define difference cases of it. A call like <value> will use
LTM to sort and try the candidates - just like an alternation did.

Protoregexes and action methods (1)

Back in the actions class, we need to update our action methods
to match the names of the rules:

method value:sym<integer>($/) { make ~$/ }

method value:sym<string>($/) { make ~$/ }

However, we do not need an action method for value itself.
Anything that looks at $<value> will be provided with the match
object from the successful candidate - and thus $<value>.ast

will obtain the correct thing.

Protoregexes and action methods (2)

For example, after we refactor queries:

token TOP { ^ <query> $ }

proto token query {*}

token query:sym<insert> {

’INSERT’ :s <pairlist>

}

token query:sym<select> {

’SELECT’ :s <keylist>

[’WHERE’ <pairlist>]?

}

The TOP action method can then simply be:

method TOP($/) {

make $<query>.ast;

}

keylist and pairlist

These are two boring action methods, included for completeness.

method pairlist($/) {

my %pairs;

for $<pair> -> $p {

%pairs{$p<key>} := $p<value>.ast;

}

make %pairs;

}

method keylist($/) {

my @keys;

for $<key> -> $k {

nqp::push(@keys, ~$k)

}

make @keys;

}

Interpreting a query

So how do we ever run the query? Well, here’s the action method
for INSERT queries:

method query:sym<insert>($/) {

my %to_insert := $<pairlist>.ast;

make -> @db {

nqp::push(@db, %to_insert);

[nqp::hash(’result’, ’Inserted 1 row’)]

};

}

Here, instead of a data structure, we make a closure that takes the
current database state (an array of hashes, where each hash is a
row) and push the hash produced by the pairlist action method

onto it.

The SlowDB class itself

class SlowDB {

has @!data;

method execute($query) {

if QueryParser.parse($query, :actions(QueryActions)) -> $parsed {

my $evaluator := $parsed.ast;

if $evaluator(@!data) -> @results {

for @results -> %data {

say("[");

say(" {$_.key}: {$_.value}") for %data;

say("]");

}

} else {

say("Nothing found");

}

} else {

say(’Syntax error in query’);

}

}

}

Exercise 3

A chance to practice with protoregexes a bit, and study for yourself
what we have been looking through.

Take the SlowDB example that we have been considering. Add
support for the UPDATE and DELETE queries.

Limitations and other differences from full Perl 6

Here’s an assortment of other things worth knowing.

There is a use statement, but it expects anything that it uses
to have been pre-compiled already.

There is no array flattening; [@a, @b] is always an array of 2
elements

The hash composer {} only works for empty hashes; anything
other than that will be treated as a block

BEGIN blocks exist but are highly constrained in what they
can see in the outer scope (only types, not variables)

Backend differences

NQP on JVM and MoarVM are relatively consistent. NQP on
Parrot is the odd one out: not everything is a 6model object. That
is, while .WHAT or .HOW will work on anything in NQP on JVM and
MoarVM, it may fail on Parrot. This happens on integer, number
and string literals, arrays and hashes, exceptions and some kinds of

code object.

Exception handlers also work out a bit differently. Those on JVM
and MoarVM run on the stack top at the point of the exception
throw, as is the Perl 6 semantics. Those in NQP on Parrot will

unwind then run, with resumption being provided by a
continuation. Note that Rakudo is consistent on this on all

backends.

Overall. . .

NQP, despite being a relatively small subset of Perl 6, still packs in
quite a few powerful language features.

Generally, demand for them has been driven by what was needed
by those working on Rakudo. As a result, NQPs feature set is
shaped by compiler-writing needs.

The grammars and action method material we have covered is
perhaps the most important, as this is the starting point for
understanding how NQP and Perl 6 are compiled.

The compilation pipeline

The compilation pipeline
Stage by stage, we compile the program. . .

From start to finish

Now we know a bit about NQP as a language, it’s time to dive
under the covers and see what happens when we feed NQP a

program to run.

To start with, we’ll consider this simple example. . .

nqp -e "say(’Hello, world’)"

. . . all the way from NQP’s sub MAIN through to the output
appearing.

We’ll choose the JVM backend to examine this.

The “stagestats” option

We can get an insight into what is going on inside of NQP by
running it with the --stagestats option, which shows the times

for each of the stages that the compiler goes through.

Stage start : 0.000 # Startup

Stage classname : 0.010 # Compute classname

Stage parse : 0.067 # Parse source, build AST

Stage ast : 0.000 # Obtain AST

Stage jast : 0.106 # Turn into JVM AST

Stage classfile : 0.032 # Turn into JVM bytecode

Stage jar : 0.000 # Maybe make a JAR

Stage jvm : 0.002 # Actually run the code

Dumping the parse tree

We can get a dump of some of the stages. For example,
--target=parse will produce a dump of the parse tree.

- statementlist: say(’Hello world’)

- statement: 1 matches

- EXPR: say(’Hello world’)

- deflongname: say

- identifier: say

- args: (’Hello world’)

- arglist: ’Hello world’

- EXPR: ’Hello world’

- value: ’Hello world’

- quote: ’Hello world’

- quote_EXPR: ’Hello world’

- quote_delimited: ’Hello world’

- quote_atom: 1 matches

- stopper: ’

- starter: ’

Dumping the AST

Also sometimes useful is --target=ast, which dumps the QAST
(output below has been simplified).

- QAST::CompUnit

- QAST::Block

- QAST::Var(lexical @ARGS :decl(param))

- QAST::Stmts

- QAST::Var(lexical GLOBALish :decl(static))

- QAST::Var(lexical $?PACKAGE :decl(static))

- QAST::Var(lexical EXPORT :decl(static))

- QAST::Stmts say(’Hello world’)

- QAST::Stmts

- QAST::Op(call &say) ’Hello world’

- QAST::SVal(Hello world)

Dumping the JVM AST

You can even get some representation of the low-level AST that is
turned into Java bytecode with --target=jast, but it’s an utter

brain-screw (small bit of it below to illustrate). :-)

.push_sc Hello world

58 __TMP_S_0

.push_sc &say

.push_idx 1

43

25 __TMP_S_0

.try

186 subcall_noa org/perl6/nqp/runtime/IndyBootstrap subcall_noa 0

:reenter_1

.catch Lorg/perl6/nqp/runtime/SaveStackException;

.push_idx 1

167 SAVER

.endtry

Going inside

Our journey starts in NQP’s MAIN sub, located in
src/NQP/Compiler.nqp. Here is a slightly simplified version
(stripped out setting up command line options and other minor

details).

class NQP::Compiler is HLL::Compiler {

}

Create and configure compiler object.

my $nqpcomp := NQP::Compiler.new();

$nqpcomp.language(’nqp’);

$nqpcomp.parsegrammar(NQP::Grammar);

$nqpcomp.parseactions(NQP::Actions);

sub MAIN(*@ARGS) {

$nqpcomp.command_line(@ARGS, :encoding(’utf8’));

}

The HLL::Compiler class

The command line method is inherited from HLL::Compiler,
located in src/HLL/Compiler.nqp. This class contains the logic

that orchestrates the compilation process.

Its functionality includes:

Argument processing (delegates to HLL::CommandLine)

Reading source files in from disk

Invoking each of the stages, stopping at --target if specified

Providing a REPL

Providing a pluggable way to handle uncaught exceptions

The path through HLL::Compiler

command line parses the arguments, then invokes command eval

command eval works out, based on the arguments, if we should
load source files from disk, obtain source from -e or enter the

REPL. The paths invoke a range of methods, but all converge back
in eval.

eval calls compile to compile the code, then invokes it

compile loops through the stages, passing the result of the
previous one as the input to the next one

A simplified version of compile

Big takeaway: stages are methods on the compiler object or a
backend object.

method compile($source, :$from, *%adverbs) {

my $target := nqp::lc(%adverbs<target>);

my $result := $source;

for self.stages() {

if nqp::can(self, $_) {

$result := self."$_"($result, |%adverbs);

}

elsif nqp::can($!backend, $_) {

$result := $!backend."$_"($result, |%adverbs);

}

else {

nqp::die("Unknown compilation stage ’$_’");

}

last if $_ eq $target;

}

return $result;

}

Stage management

It’s possible for compilers to insert extra stages into the pipeline.
For example, Rakudo inserts its optimizer.

$comp.addstage(’optimize’, :after<ast>);

Then, in Perl6::Compiler, it provides an optimize method:

method optimize($ast, *%adverbs) {

%adverbs<optimize> eq ’off’ ??

$ast !!

Perl6::Optimizer.new.optimize($ast, |%adverbs)

}

Frontends and backends

Earlier, we saw that compile looks for stage methods on the
current compiler object, then on a backend object.

The compiler object is about the language that we are
compiling (NQP, Perl 6, etc.) We collectively call these stages the

frontend.

The backend object is about the target VM that we want to
produce code for (Parrot, JVM, MoarVM, etc.) It is not tied to any
particular language. We collectively call these stages the backend.

Frontends, backends, and the QAST between them

The last stage in the front end always gives a QAST tree, and the
first stage in a backend always expects one.

A cross-compiler setup simply has a backend different from the
current VM we are running on.

Parsing in NQP

The parse stage invokes parse on the language’s grammar (for our
case, NQP::Grammar), passing the source code and

NQP::Actions. It may also turn on tracing.

method parse($source, *%adverbs) {

my $grammar := self.parsegrammar;

my $actions;

$actions := self.parseactions unless %adverbs<target> eq ’parse’;

$grammar.HOW.trace-on($grammar) if %adverbs<rxtrace>;

my $match := $grammar.parse($source, p => 0, actions => $actions);

$grammar.HOW.trace-off($grammar) if %adverbs<rxtrace>;

self.panic(’Unable to parse source’) unless $match;

return $match;

}

NQP::Grammar.TOP (1)

As in the grammars we already saw, execution starts in TOP. In
NQP, we find it’s actually a method, not a token or rule!

method TOP() {

Various things we’ll consider in a moment.

...

Then delegate to comp_unit

self.comp_unit;

}

This is actually OK, so long as it ultimately returns a Cursor

object. And since comp unit will return one, it all works out just
fine.

It’s a method as it doesn’t do any parsing, just setup work.

NQP::Grammar.TOP (2)

The first thing that TOP does is set up a language braid.

my %*LANG;

%*LANG<Regex> := NQP::Regex;

%*LANG<Regex-actions> := NQP::RegexActions;

%*LANG<MAIN> := NQP::Grammar;

%*LANG<MAIN-actions> := NQP::Actions;

While we didn’t make the distinction too carefully earlier, when we
start to parse a token, rule or regex, we’re actually switching
language. A block nested inside of a regex will in turn switch back

to the main language.

Thus, %*LANG keeps track of the current set of languages we’re
using in the parse, entangled like strands of beautifully braided hair.
Rakudo has a third language in its braid: Q, the quoting language.

NQP::Grammar.TOP (3)

Next, the current set of meta-objects are set up. Each package
declarator (class, role, grammar, module, knowhow) is mapped

to an object that implements this kind of package.

my %*HOW;

%*HOW<knowhow> := nqp::knowhow();

%*HOW<knowhow-attr> := nqp::knowhowattr();

We only have one of those built-in - knowhow. It supports having
methods and attributes, but not role composition or inheritance.

All the more interesting meta-objects are written in terms of
KnowHOW, and are in a module that is loaded at startup. We’ll

return to this topic in much more detail in day 2.

NQP::Grammar.TOP (4)

Next, an NQP::World object is created. This represents the
declarative aspects of a program (such as class declarations).

my $file := nqp::getlexdyn(’$?FILES’);

my $source_id := nqp::sha1(self.target()) ~

(%*COMPILING<%?OPTIONS><stable-sc> ?? ’’ !! ’-’ ~ ~nqp::time_n());

my $*W := nqp::isnull($file) ??

NQP::World.new(:handle($source_id)) !!

NQP::World.new(:handle($source_id), :description($file));

Each compilation unit needs to have a globally unique handle.
Since NQP bootstraps, we must usually base this off something
more than the source, as otherwise the running compiler and the

compiler being compiled would have overlapping handles!

(The --stable-sc option suppresses this for those needing to
cross-compile NQP itself when porting to a new VM.)

NQP::Grammar.comp unit

Next, we reach comp unit. Here it is, stripped to the essentials.

token comp_unit {

:my $*UNIT := $*W.push_lexpad($/);

Create GLOBALish - the current GLOBAL view.

:my $*GLOBALish := $*W.pkg_create_mo(%*HOW<knowhow>,

:name(’GLOBALish’));

{

$*GLOBALish.HOW.compose($*GLOBALish);

$*W.install_lexical_symbol($*UNIT, ’GLOBALish’, $*GLOBALish);

}

This is also the starting package.

:my $*PACKAGE := $*GLOBALish;

{ $*W.install_lexical_symbol($*UNIT, ’$?PACKAGE’, $*PACKAGE); }

<.outerctx>

<statementlist>

[$ || <.panic: ’Confused’>]

}

Dissecting comp unit: scopes

There are various methods on $*W that related to scopes.

$*W.push lexpad($/) is used to enter a new lexical scope, nested
inside the current one. It returns a new QAST::Block object

representing it.

$*W.pop lexpad() is used to exit the current lexical scope,
returning it.

$*W.cur lexpad() is used to obtain the current scope.

As the names suggest, it’s really just a stack.

Dissecting comp unit: pkg create mo

Various methods on NQP::World are about packages. The
pkg create mo method is used to create a type-object and

meta-object representing a new package.

:my $*GLOBALish := $*W.pkg_create_mo(%*HOW<knowhow>, :name(’GLOBALish’));

Due to separate compilation, everything in NQP starts out with
a clean, empty view of GLOBAL, which we know as GLOBALish.

These are unified at module load time.

The pkg create mo method is also used when dealing with
keywords like class; in this case, it uses %*HOW<class>.

Dissecting comp unit: install lexical symbol

Consider the following NQP snippet.

for @acts {

my class Act { ... }

my $a := Act.new(:name($_));

}

This lexical scope will clearly have the symbols Act and $a.
However, they differ in an important way. Act is fixed at compile
time, whereas $a is fresh each time around the loop. Symbols

fixed at compile time in a lexical scope are installed with:

$*W.install_lexical_symbol($*UNIT, ’GLOBALish’, $*GLOBALish);

Dissecting comp unit: outer ctx

The outer ctx token looks like this:

token outerctx { <?> }

Huh? That’s an “always succeed” assertion! The success, however,
triggers the outer ctx action method in NQP::Actions. Its most

important line is:

my $SETTING := $*W.load_setting(

%*COMPILING<%?OPTIONS><setting> // ’NQPCORE’);

Which loads the NQP setting (NQPCORE by default), which in turn
brings in the meta-objects (for class, role, etc.) and also types

like NQPMu and NQPArray.

statementlist

The final thing the comp unit token does is call statementlist,
which does what the name suggests: parses a list of statements.

rule statementlist {

| $

| [<statement><.eat_terminator>]*

}

The eat terminator rule will match a semicolon, but also
handles the use of a closing curly bracket to terminate a

statement. Note the space after it is so a <.ws> will be inserted.

statement

The statement rule expects to find either a statement control

(things like if, while and CATCH - this is a protoregex!) or an
expression, which may be followed by a statement modifying

condition and/or loop.

**0..1 is like Perl 5 {0,1}; forces an array, which ? does not.

token statement {

<!before <[\])}]> | $ >

[

| <statement_control>

| <EXPR> <.ws>

[

|| <?MARKED(’endstmt’)>

|| <statement_mod_cond> <statement_mod_loop>**0..1

|| <statement_mod_loop>

]**0..1

]

}

Aside: expression parsing

When we need to parse something like. . .

$x * -$grad + $c

. . . we need to pay attention to precedence. Trying to encode
precedence as a bunch of rules calling each other would be terribly
inefficient (one call for each level in the table!) and horrible to

maintain.

Thus, EXPR actually calls into an operator precedence parser. Its
implementation lives in HLL::Grammar, though we’ll not look into
that during this course; it’s mildly terrifying and not something

you’re ever likely to need to change.

We will, however, see how to configure it later.

Terms

The operator precedence parser in EXPR is interested not only in
operators, but also in the terms that the operators apply to.

When it wants a term, it calls termish, which in turn calls term,
another proto-regex.

For our say(’Hello, world’) example, the interesting term is
the one that parses a function call:

token term:sym<identifier> {

<deflongname> <?[(]> <args> # <?[(]> is a lookahead

}

Now we’re getting there! We just need to parse a name and an
argument list.

deflongname

Parses an identifier (nothing clever here), followed by an optional
colonpair (since things like infix:<+> are valid function names).

token deflongname {

<identifier> <colonpair>**0..1

}

After we parse this, we (finally!) end up calling our first action
method:

method deflongname($/) {

make $<colonpair>

?? ~$<identifier> ~ ’:’ ~ $<colonpair>[0].ast.named

~ ’<’ ~ colonpair_str($<colonpair>[0].ast) ~ ’>’

!! ~$/;

}

Parsing arguments

Parses parentheses, then delegates off to the operator precedence
parser again to parse either a single argument or a comma

separated list of arguments.

token args {

’(’ <arglist> ’)’

}

token arglist {

<.ws>

[

| <EXPR(’f=’)>

| <?>

]

}

f= indicates loosest allowed precedence level

Parsing values

Once again, the operator precedence parser calls term, and this
time we end up reaching term:sym<value>.

token term:sym<value> { <value> }

token value {

| <quote>

| <number>

}

We have a quoted string, and thus end up in the quote
protoregex, which in turn puts us in the candidate that parses a

single quoted string.

token quote:sym<apos> { <?[’]> <quote_EXPR: ’:q’> }

Actions all the way up!

We’ve actually bottomed out in the parsing of this statement now.
However, we did not yet build any QAST nodes, which will

indicate what the program should actually do when we run it.

The quote EXPR action inherited from HLL::Actions does the
hard work with regard to our quoted string:

method quote:sym<apos>($/) { make $<quote_EXPR>.ast; }

It produces a QAST::SVal node, which represents a string literal:

QAST::SVal.new(:value(’Hello, world!’))

value actions

The value action method simply checks if we parsed a quote or a
number, and then calls make with the AST of what we parsed.

method value($/) {

make $<quote> ?? $<quote>.ast !! $<number>.ast;

}

And the value case of a term simply passes the value QAST on
upwards:

method term:sym<value>($/) { make $<value>.ast; }

arglist actions

The arglist action method makes a QAST::Op node that
represents a call. The name will be attached later. It has to

handle 3 cases: zero arguments (so $<EXPR> was not matched), a
single argument, or a comma-separated list of arguments.

method args($/) { make $<arglist>.ast; }

method arglist($/) {

my $ast := QAST::Op.new(:op(’call’), :node($/));

if $<EXPR> {

my $expr := $<EXPR>.ast;

if nqp::istype($expr, QAST::Op) && $expr.name eq ’&infix:<,>’ {

for $expr.list { $ast.push($_); }

}

else { $ast.push($expr); }

}

make $ast;

}

Function call actions

Now we have canonicalized the name and built a QAST node that
represents a call. Therefore, the action method for a term that is a
function call takes the call QAST node, sets its name (prepending

an &) and passes it on up.

method term:sym<identifier>($/) {

my $ast := $<args>.ast;

$ast.name(’&’ ~ $<deflongname>.ast);

make $ast;

}

Action methods higher up tend to combine together ASTs,
generated by action methods lower in the parse, into bigger ASTs.

statement actions

Here’s a simplified version. There’s nothing really new to see in
here. The real thing is only more complex because it’s handling the

statement modifying conditionals and loops.

method statement($/, $key?) {

my $ast;

if $<EXPR> { $ast := $<EXPR>.ast; }

elsif $<statement_control> { $ast := $<statement_control>.ast; }

else { $ast := 0; }

make $ast;

}

The 0 simply means “we didn’t find anything to parse here” -
probably due to reaching the end of the source.

statementlist actions

Slightly simplified, but not much. A QAST::Stmts node indicates
a set of things to do sequentially. We push the QAST node for

each statements (in our case, one) onto it.

method statementlist($/) {

my $ast := QAST::Stmts.new(:node($/));

if $<statement> {

for $<statement> {

$ast.push($_.ast);

}

}

else {

$ast.push(default_for(’$’));

}

make $ast;

}

The else ensures we never produce an empty QAST::Stmts that
would evaluate to null, but rather evaluate to NQPMu.

comp unit actions

Finally, we reach the top! The comp unit action method - again
slightly simplified - pushes the QAST::Stmts on to the

QAST::Block node, making these the statements to be executed
by that block. Everything is then wrapped in a QAST::CompUnit,

which also specifies which language the code is from.

method comp_unit($/) {

Push mainline statements into UNIT.

my $mainline := $<statementlist>.ast;

my $unit := $*W.pop_lexpad();

$unit.push($mainline);

Wrap everything in a QAST::CompUnit.

make QAST::CompUnit.new(

:hll(’nqp’),

Much elided here; details later.

$unit

);

}

The end of the frontend

At this point, stage parse is completed! We have successfully
executed the grammar, which produced us a Match object. And
attached to this match object is a QAST tree that represents the

semantics of the program.

Therefore, stage ast is rather straightforward.

method ast($source, *%adverbs) {

my $ast := $source.ast();

self.panic("Unable to obtain AST"

unless $ast ~~ QAST::Node;

$ast;

}

From here, we now enter the backend.

Aside: why interleave parsing and AST building?

One may wonder why parsing is not completed in full, and then an
AST built. The answer is that in many cases, we need to evaluate
pieces of the AST as we go about the parsing. For example, in:

BEGIN { say("OMG I’m alive!") }

1 2

That BEGIN block should actually run and produce its output,
even though there is a syntax error right after it.

BEGIN-time things can have side-effects that actually influence the
parse that follows on from them.

Code generation: a quick overview

The job of a backend is to take a QAST tree and produce code for
the target runtime. This, once again, is organized by a set of

stages. Their names will vary depending on if you are targetting
Parrot, the JVM, MoarVM, etc.

We shall postpone looking at the details of any of those stages
until later, and even then shall not dive too deeply into them.
Much of the code that is contained within them is unlikely to

change much in the future, and to make sense of much of it needs
an intimate knowledge of the backend in question.

For now, we’ll treat these stages as a magical black box. :-)

Building a tiny language from scratch

So, that’s diving in to NQP. It can be a little overwhelming, and so
it’s good to practice on something a bit smaller.

Therefore, we’ll build ourselves a couple of small compilers. I’ll do
one here, and you’ll do one in the exercise.

The funny thing is that mine will be a Ruby subset.

The funnier thing is that yours will be a PHP subset.

We’ll start by achieving “Hello, world”, then in the next section -
as we learn more about QAST - start to add language features.

Stubbing a compiler

Just subclass three things from the NQPHLL library.

use NQPHLL;

grammar Rubyish::Grammar is HLL::Grammar {

}

class Rubyish::Actions is HLL::Actions {

}

class Rubyish::Compiler is HLL::Compiler {

}

sub MAIN(*@ARGS) {

my $comp := Rubyish::Compiler.new();

$comp.language(’rubyish’);

$comp.parsegrammar(Rubyish::Grammar);

$comp.parseactions(Rubyish::Actions);

$comp.command_line(@ARGS, :encoding(’utf8’));

}

We already have a REPL

If we run the code from the previous slide, we find we already have
ourselves a simple REPL (Read Eval Print Loop).

Predictably, trying to run things doesn’t work:

> puts "Hello world"

Method ’TOP’ not found for invocant of class ’Rubyish::Grammar’

Of course, that also tells us exactly what we should do next. . .

A basic grammar

Rubyish is line-oriented, so each statement is separated by a
newline, and only horizontal whitespace is allowed between tokens.

grammar Rubyish::Grammar is HLL::Grammar {

token TOP { <statementlist> }

rule statementlist { [<statement> \n+]* }

proto token statement {*}

token statement:sym<puts> {

<sym> <.ws> <?["]> <quote_EXPR: ’:q’>

}

Whitespace required between alphanumeric tokens

token ws { <!ww> \h* || \h+ }

}

What have we now?

With this, we can now parse our simple program, but it fails when
trying to obtain the AST:

> puts "Hello world"

Unable to obtain AST from NQPMatch

Which, again, tells us what we need to do next: actions!

Basic actions

class Rubyish::Actions is HLL::Actions {

method TOP($/) {

make QAST::Block.new($<statementlist>.ast);

}

method statementlist($/) {

my $stmts := QAST::Stmts.new(:node($/));

for $<statement> {

$stmts.push($_.ast)

}

make $stmts;

}

method statement:sym<puts>($/) {

make QAST::Op.new(

:op(’say’),

$<quote_EXPR>.ast

);

}

}

It works!

Recall that the backends are language independent; they simply
expect a QAST tree as input. And our actions produce one. As
such, we now have a working compiler for our very, very simple

language.

> puts "Hello world"

Hello World

We can also dump the AST:

- QAST::Block

- QAST::Stmts puts \"Hello, world\"\n

- QAST::Op(say)

- QAST::SVal(Hello, world)

In summary. . .

We’ve walked our way through the flow of control from invoking
NQP at the command line, seeing it parse our program, build up a
QAST tree for it and pass it off to the backend for compilation.

We then used this same technology to build a tiny compiler up
from scratch.

Since it’s built on the same technology as NQP and Rakudo, it
gets the same benefits. For example, out of the box our compiler
already works both on Parrot and the JVM.

Exercise 4

In this exercise, you’ll build the PHPish equivalent of my Rubyish.

The main difference is that the keyword you want is echo, and the
lines are separated by semicolons rather than newline characters.

QAST

QAST
Between frontend and backend: the Q Abstract Syntax Tree

Digging deeper into QAST

We’ve already built some very simple QAST trees so far. However,
they have barely scratched the surface of what is available in

QAST.

In this section of the course, we will look at a much wider range of
node types and the options they support.

To provide concrete examples, Rubyish will be extended to support
a wider range of language features.

QAST::Node: children

All of the QAST node types inherit from the base class
QAST::Node.

All QAST nodes support having child nodes. The initial set of
child nodes may be passed as positional arguments to new. On any

node, it’s possible to:

my $first := $ast[0]; # get first child

$ast[0] := $child; # set first child

$ast.push($child); # push a child

$child := $ast.pop(); # pop a child

$ast.unshift($child); # unshift a child

$child := $ast.shift(); # shift a child

@children := $ast.list(); # get underlying children list

QAST::Node: annotations

All QAST nodes can be given arbitrary annotations by using hash
indexing on the node.

$var<used> := 1;

This can be very useful, but it’s easy to overuse and create a
tangled mess. Yes, I learned this the hard way.

All annotations can be obtained using the hash method:

my %anno := $var.hash();

QAST::Node: return type

There are two other important things you can do with a QAST
node. All nodes can be annotated with the type that they will

evaluate to.

$ast.returns($some_type);

Note that you specify a type object to represent the type, not a
string name of the type! In some cases, the type set here is used in
code generation (for example, natively typed variables get their

native storage allocated by virtue of this).

This can also be set when creating a node in the first place:

QAST::Var.new(..., :returns(int))

QAST::Node: node

One other important thing we may wish to do is associate a QAST
node with a source location. This information is persisted by the
backend code generation, such that it can be used to produce

meaningful backtraces when runtime errors occur.

The node method expects to be given a match object:

$ast.node($/);

Once again, it can be specified (typically on QAST::Stmts nodes)
as a node constructor argument.

my $ast := QAST::Stmts.new(:node($/));

The top of the tree

At the top level, a QAST tree must have either a
QAST::CompUnit or a QAST::Block.

A QAST::CompUnit represents a compilation unit. It should have a
single child which is a QAST::Block. However, it can also specify

many other bits of configuration; we’ll see more later.

A QAST::Block represents a lexical scope. Whenever one
QAST::Block is nested inside another, it represents a nested

lexical scope that can see the variables in the outer one. Combined
with cloning, this also facilitates closure semantics.

Literals: QAST::IVal, QAST::NVal and QAST::SVal

These three node types represent integer, floating point and string
literals. If we update our grammar to parse different kinds of value:

proto token value {*}

token value:sym<string> { <?["]> <quote_EXPR: ’:q’> }

token value:sym<integer> { ’-’? \d+ }

token value:sym<float> { ’-’? \d+ ’.’ \d+ }

Then we can write the actions as:

method value:sym<string>($/) {

make $<quote_EXPR>.ast;

}

method value:sym<integer>($/) {

make QAST::IVal.new(:value(+$/.Str))

}

method value:sym<float>($/) {

make QAST::NVal.new(:value(+$/.Str))

}

Trying our literals

After a small tweak to puts parsing. . .

token statement:sym<puts> {

<sym> <.ws> <value>

}

. . . and the matching tweak in the actions, we can now do:

> puts 42

42

> puts 0.999

0.999

> puts "It’s not a bacon tree, it’s a hambush!"

It’s not a bacon tree, it’s a hambush!

Operations: QAST::Op

The QAST::Op node is the gateway to an incredible number of
operations. They are the same ones available through the

nqp::op(...) syntax.

Typically, a QAST::Op node looks something like this:

QAST::Op.new(

:op(’add_n’),

$left_child_ast,

$right_child_ast

)

The operation is specified with the :op(...) named argument,
and operands are the node’s children.

Parsing some mathematical operators (1)

Let’s add addition, subtraction, multiplication and division. For
these, we need to set up the operator precedence parser,

configuring two precedence levels.

INIT {

Steal precedence level names from Perl 6 grammar

Rubyish::Grammar.O(’:prec<u=>, :assoc<left>’, ’%multiplicative’);

Rubyish::Grammar.O(’:prec<t=>, :assoc<left>’, ’%additive’);

}

Note that the O method we call here is inherited from
HLL::Grammar. The first argument specifies precedence level and
associativity. The second then saves this particular configuration

by name, so we can refer to it when we declare operators.

Parsing some mathematical operators (2)

With the precedence levels in place, we can add some operators
into the grammar. This is done by adding them to the infix

protoregex, which we inherit from HLL::Grammar.

token infix:sym<*> { <sym> <O(’%multiplicative, :op<mul_n>’)> }

token infix:sym</> { <sym> <O(’%multiplicative, :op<div_n>’)> }

token infix:sym<+> { <sym> <O(’%additive, :op<add_n>’)> }

token infix:sym<-> { <sym> <O(’%additive, :op<sub_n>’)> }

The :op<...> syntax instructs the EXPR action method we
inherit from HLL::Actions to construct a QAST::Op node of that

op for us!

Terms

We are nearly ready to use the operator precedence parser, but not
quite. We must also instruct it on how to obtain a term. We
inherit a term protoregex from HLL::Grammar, and so need only

add candidates for it.

For us, that means a candidate for a term that is a value:

token term:sym<value> { <value> }

And the matching action method:

method term:sym<value>($/) { make $<value>.ast; }

Wiring it all up

The final thing we need to do is update the grammar rule for puts:

token statement:sym<puts> {

<sym> <.ws> <EXPR>

}

Along with the action method:

method statement:sym<puts>($/) {

make QAST::Op.new(

:op(’say’),

$<EXPR>.ast

);

}

Trying out our operators

Basic arithmetic now works, and precedence is done correctly.

> puts 10 * 9 + 1

91

We may also inspect the AST to see the QAST::Op nodes:

- QAST::Block

- QAST::Stmts puts 10 * 9 + 1\n

- QAST::Op(say)

- QAST::Op(add_n &infix:<+>) +

- QAST::Op(mul_n &infix:<*>) *

- QAST::IVal(10)

- QAST::IVal(9)

- QAST::IVal(1)

Sequencing: QAST::Stmts and QAST::Stmt

There are two node types that represent running each of their
children in order

QAST::Stmts does, quite literally, nothing more than that

QAST::Stmt has the added effect of stating that any temporaries
that are created during code generation will not be needed beyond

the end of this node’s execution

Generally, using them in places where the language user would
think of having a set of statements vs. a single statement makes

sense.

Block structure

A common idiom, though in no way enforced, is for a
QAST::Block to have two QAST::Stmts nodes within it

The first one is used to hold declarations, for example of variables
or of nested routines

The second one is used to hold the statements parsed by
statementlist for that block

This idiom is used in both NQP and Rakudo; for example:

$block[0].push(QAST::Var.new(:name<$/>, :scope<lexical>, :decl<var>));

Variables

It’s time to add variables to Rubyish! In Rubyish, variables aren’t
declared explicitly. Instead, they are declared in the current scope

on their first assignment.

First, let’s add a precedence level for assignment:

Rubyish::Grammar.O(’:prec<j=>, :assoc<right>’, ’%assignment’);

And parse the assignment operator, using the bind NQP operation
which will bind the expression on the right to a variable on the left:

token infix:sym<=> { <sym> <O(’%assignment, :op<bind>’)> }

Expressions as statements

One thing you may recall from the NQP grammar is that an
expression was also a valid statement. We need to do that in

Rubyish too.

This means adding to the grammar:

token statement:sym<EXPR> { <EXPR> }

And the actions:

method statement:sym<EXPR>($/) { make <EXPR>.ast; }

Identifier parsing

For now, we’ll treat all identifiers as if they were variables. We
parse them like this:

token term:sym<ident> {

:my $*MAYBE_DECL := 0;

<ident>

[<?before \h* ’=’ [\w | \h+] { $*MAYBE_DECL := 1 }> || <?>]

}

Notice how this looks ahead to see if we can find an assignment
operator with whitespace around it or an identifier right after it

(must not treat == as if it were an assignment!)

A dynamic variable is used to convey if an assignment happens,
which may mean we have a declaration.

Identifier actions

Here is a first, cheating attempt at the actions for an identifier.

method term:sym<ident>($/) {

if $*MAYBE_DECL {

make QAST::Var.new(:name(~$<ident>), :scope(’lexical’),

:decl(’var’));

}

else {

make QAST::Var.new(:name(~$<ident>), :scope(’lexical’));

}

}

This does allow us to run:

a = 7

b = 6

puts a * b

The problem

Things come unstuck fairly quickly, unfortunatley. Every
assignment is now taken to be a declaration. Thus:

a = 1

puts a

a = 2

puts a

Fails with:

Error while compiling block: Error while compiling op bind:

Lexical ’a’ already declared

The symbol table

Every QAST::Block comes with a symbol table that can be used
to store extra information about the symbols declared within it.

Really, it’s just a hash of hashes, the first hash keyed on the
symbol and the inner hashes storing whatever information we wish.

We can add to or update a symbol’s entries by doing:

$block.symbol($ident, :declared(1));

We can get hold of the current information held on a symbol by
doing:

my %sym := $block.symbol($ident);

Next challenge: keeping track of the block

We need to have access to the current block we are declaring
things in before we can use symbols. This is most easily handled
by placing it in a dynamic variable, creating it in the TOP grammar

rule:

token TOP {

:my $*CUR_BLOCK := QAST::Block.new(QAST::Stmts.new());

<statementlist>

[$ || <.panic(’Syntax error’)>]

}

With the TOP action method becoming:

method TOP($/) {

$*CUR_BLOCK.push($<statementlist>.ast);

make $*CUR_BLOCK;

}

Using symbol

Now, we can use symbol to track what was already declared and
not re-declare it.

method term:sym<ident>($/) {

my $name := ~$<ident>;

my %sym := $*CUR_BLOCK.symbol($name);

if $*MAYBE_DECL && !%sym<declared> {

$*CUR_BLOCK.symbol($name, :declared(1));

make QAST::Var.new(:name($name), :scope(’lexical’),

:decl(’var’));

}

else {

make QAST::Var.new(:name($name), :scope(’lexical’));

}

}

Other scopes

The QAST::Var node isn’t just for lexical scoping. The available
scopes are:

lexical visible to nested blocks

local like lexical, but not visible to nested blocks

contextual dynamically scoped lookup of a lexical

attribute object attribute (children: invocant, package)

positional array indexing (children: array, index)

associative hash indexing (children: hash, key)

Note that only the first 3 make sense as a declaration. Also note
that Rakudo does not use the last 2 (its array and hash handling is

factored differently), though NQP does.

Routines

To demonstrate lexical scoping a little more, let’s add routines.
The syntax for declaring and calling them is as follows:

def greet

puts "hello"

end

greet()

We’ll keep things simple by not handling the other forms of calling.

Parsing a routine declaration

Nothing especially new in here. We take care to start a new lexical
scope, so any declarations made will not polluate the surrounding
scope. The split is so the first token’s action method can see the

$*CUR BLOCK to install into.

token statement:sym<def> {

’def’ \h+ <defbody>

}

rule defbody {

:my $*CUR_BLOCK := QAST::Block.new(QAST::Stmts.new());

<ident> \n

<statementlist>

’end’

}

NQP and Rakudo do pretty much the same, the only difference
being that they abstract the pushing/popping of the blocks and

keep a stack of them.

Parsing calls

A call is an identifier followed by some parentheses. We also take
care to avoid keywords.

token term:sym<call> {

<!keyword>

<ident> ’(’ ’)’

}

The <!keyword> is also applied to term:sym<ident>.

Actions for routine declaration

defbody finishes up the QAST::Block, and it is installed as a
lexical by statement:sym<def>.

method statement:sym<def>($/) {

my $install := $<defbody>.ast;

$*CUR_BLOCK[0].push(QAST::Op.new(

:op(’bind’),

QAST::Var.new(:name($install.name), :scope(’lexical’),

:decl(’var’)),

$install

));

make QAST::Op.new(:op(’null’));

}

method defbody($/) {

$*CUR_BLOCK.name(~$<ident>);

$*CUR_BLOCK.push($<statementlist>.ast);

make $*CUR_BLOCK;

}

Invocation

Calling is an operation, and therefore done with QAST::Op. By
default, the name of the thing to call - which will be resolved

lexically - is specified in the name named argument.

method term:sym<call>($/) {

make QAST::Op.new(:op(’call’), :name(~$<ident>));

}

Any case where name is not specified will take the first child of the
node as the thing to invoke. Thus we could have written:

method term:sym<call>($/) {

make QAST::Op.new(

:op(’call’),

QAST::Var.new(:name(~$<ident>), :scope(’lexical’)

);

}

Parameters and arguments

Argument and parameter handling involve no node types we
haven’t seen before. Arguments are just children to the QAST::Op
call node, and parameters are simply QAST::Var nodes with the

decl set to param.

First, let’s add parsing for parameters.

rule defbody {

:my $*CUR_BLOCK := QAST::Block.new(QAST::Stmts.new());

<ident> <signature>? \n

<statementlist>

’end’

}

rule signature {

’(’ <param>* % [’,’] ’)’

}

token param { <ident> }

Parameter actions

The param action method looks like this:

method param($/) {

$*CUR_BLOCK[0].push(QAST::Var.new(

:name(~$<ident>), :scope(’lexical’), :decl(’param’)

));

$*CUR_BLOCK.symbol(~$<ident>, :declared(1));

}

Interestingly, it never does make. This may seem odd at first, as
the action methods elsewhere have done so. But it has no reason
to; what we really wish to do is install the declared parameter into

the current block. It’s easier to just get at it contextually.

Passing arguments

Here’s a quick and easy way to parse the arguments:

token term:sym<call> {

<!keyword>

<ident> ’(’ :s <EXPR>* % [’,’] ’)’

}

Then we update the actions:

method term:sym<call>($/) {

my $call := QAST::Op.new(:op(’call’), :name(~$<ident>));

for $<EXPR> {

$call.push($_.ast);

}

make $call;

}

So far. . .

So far, we have used the following QAST node types:

QAST::Block A lexical scope

QAST::Stmts A sequence of things to execute

QAST::Stmt As above, but also a temporaries boundary

QAST::Op An operation of some kind

QAST::Var A variable or parameter usage/declaration

QAST::IVal Integer literal

QAST::NVal Floating point literal

QAST::SVal String literal

We’ll consider a few more node types today; we’ll put off some
(QAST::WVal and QAST::Regex) until tomorrow.

Block references with QAST::BVal

A QAST::Block should only ever appear once inside a QAST tree.
Where it is placed defines its lexical scope.

So what if you want to refer to a QAST::Block elsewhere in the
tree? That’s what a QAST::BVal, short for Block Value, is for. For
example, it is used when emitting code to make the CORE setting

be a program’s outer lexical scope.

my $set_outer := QAST::Op.new(

:op(’forceouterctx’),

QAST::BVal.new(:value($*UNIT)),

QAST::Op.new(

:op(’callmethod’), :name(’load_setting’),

stuff left out here

));

Boxed vs. unboxed, void vs. non-void context

As the backend code generation takes place, it may need to box
and/or unbox things, or it may determine that something will be in

a void (sink) context.

While it can reliably produce working code, it may not be efficient.
Consider the integer constant handling here:

my int $x = 42; # Needs an unboxed native int

my $x = 42; # Needs a boxed Int object

When we write the action method for integer literals, we have a
dilemma. Should we emit a QAST::IVal, which will have to be
boxed in the second case? Or should we put an Int constant 42

into the constants pool and reference it with a QAST::WVal (more
on this node type tomorrow)?

QAST::Want to the rescue

Rather than choosing, we can present both options, and let the
code generator pick whichever will be most efficient. This is done

through the QAST::Want node.

QAST::Want.new(

QAST::WVal.new(:value($boxed_constant)),

’Ii’, QAST::IVal.new(:value($the_value))

)

The first child is the default thing. It is followed by a set of
selectors for different contexts we may be in.

Ii native integer

Nn native floating point number

Ss native string

v void

The backend escape hatch: QAST::VM (1)

Sometimes, there’s a need to do things conditionally by
backend, or to do some VM-specific operation. The QAST::VM

node handles this need.

For example, here is some code from NQP that loads the NQP
module loader. It needs to know what filename to look for by

backend.

QAST::Op.new(

:op(’loadbytecode’),

QAST::VM.new(

:parrot(QAST::SVal.new(:value(’ModuleLoader.pbc’))),

:jvm(QAST::SVal.new(:value(’ModuleLoader.class’)))

))

If there’s no applicable option for the current backend, an
exception will be thrown by the code generator.

The backend escape hatch: QAST::VM (2)

The QAST::VM node type is also behind the pir::op SIG(...)

syntax that is available in NQP and Rakudo. Here is how pir::op

is parsed and implemented in NQP.

token term:sym<pir::op> {

’pir::’ $<op>=[\w+] <args>**0..1

}

method term:sym<pir::op>($/) {

my @args := $<args> ?? $<args>[0].ast.list !! [];

my $pirop := ~$<op>;

$pirop := join(’ ’, nqp::split(’__’, $pirop));

make QAST::VM.new(:pirop($pirop), :node($/), |@args);

}

At the top: QAST::CompUnit

QAST trees produced by Rakudo and NQP have a
QAST::CompUnit at the top.

What we can do with QAST::CompUnit

Here’s a look at some of what QAST::CompUnit can do (we’ll see
it again tomorrow).

my $compunit := QAST::CompUnit.new(

Set the language this contains.

:hll(’nqp’),

What to do if the compilation unit is loaded as a module.

:load(QAST::Op.new(

:op(’call’),

QAST::BVal.new(:value($unit))

)),

What to do if the compilation unit is invoked as the main,

top-level program.

:main(...),

1 child, which is the top-level QAST::Block

$unit

);

Exercise 5

In this exercise, you’ll add a few features to PHPish, in order to
explore the QAST nodes we’ve been studying.

Looking at the NQP grammar and actions to understand how they
work - or even stealing from them wholesale and cargo-culting - is

encouraged! :-)

Exploring nqp:: ops

Exploring nqp:: ops
Learn all the operations!

Just a glimpse

There are literally hundreds of available nqp::ops. They range
from arithmetic to string manipulation, from flow control (like

looping) to type creation.

We’ve already seen some of the operations. Tomorrow, we’ll see a
bunch more as we look at 6model and serialization contexts, which

have a bunch of nqp::ops associated with them.

In this section, we’ll take an overview of “the rest”. The overview
is not exhaustive, as that would be exhausting.

Remember they can be used in the nqp::op form or in a
QAST::Op node, so this knowledge is reusable for both!

Arithmetic

These come in native integer form:

add_i sub_i mul_i div_i mod_i

neg_i abs_i

As well as native float form:

add_n sub_n mul_n div_n mod_n

neg_n abs_n

To help with implementing rationals, we also have:

lcm_i gcd_i

Numerics

The basic stuff:

pow_n ceil_n floor_n

ln_n sqrt_n log_n

exp_n isnanorinf inf

neginf nan

Trigometric:

sin_n asin_n cos_n acos_n tan_n

atan_n atan2_n sinh_n cosh_n tanh_n

sec_n asec_n sech_n

Relational

For comparing native integers, native floats and native strings (the
code generator will unbox as needed). For example, the native

integer forms are:

cmp_i compare; returns -1, 0, or 1

iseq_i non-zero if equal

isne_i non-zero if non-equal

islt_i non-zero if less than

isle_i non-zero if less than or equal to

isgt_i non-zero if greater than

isge_i non-zero if greater than or equal to

The n and s forms all exist too.

Array operations

There are various operations for manipulating arrays:

atpos atpos_i atpos_n atpos_s

bindpos bindpos_i bindpos_n bindpos_s

push push_i push_n push_s

pop pop_i pop_n pop_s

shift shift_i shift_n shift_s

unshift unshift_i unshift_n unshift_s

splice existspos elems setelems

Note that the natively typed versions are not coercive, but only
work on a natively typed array.

Hash operations

Don’t look too different from the array operations.

atkey atkey_i atkey_n atkey_s

bindkey bindkey_i bindkey_n bindkey_s

existskey deletekey elems

These all assume that the keys are strings; any non-string key will
be coerced to a string first.

Aside: Perl 6 use of the array/hash ops

In Perl 6, something like:

@a[0] = 42;

Actually uses atpos to get the scalar container bound into the
underlying array storage, and then assigns to that container.

bindpos is only used for doing:

@a[0] := 42;

Also, you never do this directly on a Perl 6 Array or Hash object.
These objects contain a lower-level array or hash as an attribute,

and methods use this ops on that.

Creating lists and hashes

The nqp::list op creates a (low level) array with the elements
passed to it. As a result, it is a variable argument op.

nqp::list($foo, $bar, $baz)

Natively typed lists can be created with list i, list n and
list s.

There is a similar nqp::hash, which expects a key, a value, . . .

nqp::hash(’name’, $name, ’age’, $age)

Finally, islist and ishash tell you if something is a low-level
array or hash.

String

String operations are mostly named as Perl 6 does.

chars uc lc x

concat chr join split

flip replace substr ord

index rindex codepointfromname

There are also operations for checking character class membership.
These are mostly emitted when compiling regexes or in the
regex-related classes, but may be used elsewhere. They are:

nqp::iscclass(class, str, index)

nqp::findcclass(class, str, index, limit)

nqp::findnotcclass(class, str, index, limit)

Where class is one of the nqp::const::CCLASS *.

Conditionals

The if and unless ops expect two or three children: a condition,
a “then”, and an optional “else”. Note that elsif in NQP and

Perl 6 is compiled by nesting if QAST::Op nodes.

AST for ’$/.ast ?? $/.ast !! $/.Str’

QAST::Op.new(

:op(’if’),

QAST::Op.new(

:op(’callmethod’), :name(’ast’),

QAST::Var.new(:name(’$/’), :scope(’lexical’))

),

QAST::Op.new(

:op(’callmethod’), :name(’ast’),

QAST::Var.new(:name(’$/’), :scope(’lexical’))

),

QAST::Op.new(

:op(’callmethod’), :name(’Str’),

QAST::Var.new(:name(’$/’), :scope(’lexical’))

)

)

Conditionals and arity-1 blocks

Both NQP and Perl 6 supporting things like:

if %core_ops{$name} -> $mapper {

return $mapper($qastcomp, $op);

}

This evaluates %core ops{$name}, then passes it in to $mapper if
it’s a truthy value.

At QAST level, this is represented by the second child of the if op
being a QAST::Block whose arity is set to a non-zero value.

Loops

There are four related loop constructs:

Loop while true Loop while false

--------------- ---------------

Condition, then body | while until

Body, then condition | repeat_while repeat_until

They take two or three children:

The condition

The body

Optionally, something to do after the body

If a redo control exception is thrown, the second child is
re-evaluated. The third is only evaluated after any redos have
taken place. It’s used by the Perl 6 (C-style) loop construct.

Loop example

The Perl 6 let and temp keywords keep a list of containers and
their original values (a container, a value, etc.) This is the loop

that goes through this list at block exit to do restoration.

$phaser_block.push(QAST::Op.new(

:op(’while’),

QAST::Var.new(:name($value_stash), :scope(’lexical’)),

QAST::Op.new(

:op(’p6store’),

QAST::Op.new(

:op(’shift’),

QAST::Var.new(:name($value_stash), :scope(’lexical’))

),

QAST::Op.new(

:op(’shift’),

QAST::Var.new(:name($value_stash), :scope(’lexical’))

))));

Other control structures

There are three others that are worth knowing about:

for takes two children, something iterable (typically a low
level array or list) and a block. It invokes the block for each
thing in the iterable. Used in NQP only; Rakudo does
iterators completely differently.

ifnull takes two children. It evaluates the first. If it is not
null, it just produces this value. If it is null, it evaluates the
second child.

defor is the same as ifnull, but considers definedness
rather than nullness

Throwing exceptions

There are various operations for creating and throwing an
exception:

newexception Creates a new, empty, exception object

setextype Sets the exception category (nqp::const::CONTROL_*)

setmessage Sets the exception message (string)

setpayload Sets the exception payload (object)

throw Throws an exception object

die Makes/throws an exception with a string message

There is an easier way to throw some of the common control
exceptions:

QAST::Op.new(:op(’control’), :name(’next’))

Other valid names here are are redo and last.

Handling exceptions

The handle op is used to express exception handling. The first
child is the code to protect with the handler(s). The handlers are

then specified as a string specifying the kind of exception to
handle, followed by the QAST to run to handle it.

NQP and Rakudo keep a per-block %*HANDLERS, and build the
handle op out of it when the block is fully parsed.

my $ast := $<statementlist>.ast;

if %*HANDLERS {

$ast := QAST::Op.new(:op(’handle’), $ast);

for %*HANDLERS {

$past.push($_.key);

$past.push($_.value);

}

}

Working with exception objects

Within a handler, the following operations can be used. Except the
first, they all take an exception object.

exception Gets the current exception object

getextype Gets the exception category (nqp::const::CONTROL_*)

getmessage Gets the exception message (string)

getpayload Gets the exception payload (object)

rethrow Re-throws the exception

resume Resumes the exception, if possible

Finally, there are two more operations that relate to backtraces;
backtrace returns an array of hashes, each hash describing a

backtrace entry, while backtracestrings simply returns an array
of strings describing the entries.

Context introspection

Various operations are available to introspecting the symbols in a
lexical scope, or walk the dynamic (caller) or static (lexical) chain
of scopes. They are typically used to implement features such as

the CALLER and OUTER pseudo-packages in Perl 6.

ctx get an object representing the current context

ctxouter take a context and return its outer context, or null

ctxcaller take a context and return its caller contxt, or null

ctxlexpad take a context and return its lexpad

curlexpad get the current lexpad

lexprimspec given a lexpad and a name, get the name’s primitive type

The lexpad itself can be used with the appropriate hash operations
(atkey, bindkey) to manipulate the symbols contained within it.

Big integers

Perl 6 needs big integer support for its Int type. Therefore, it is
provided for in the NQP operations. The big integer operations are
only valid on an object with the P6bigint representation (more on

representations tomorrow) or something that boxes it.

Those operations that have a big integer result differ from their
native relatives by taking an extra operand, which is the type

object for the result. The following multis from the Perl 6 setting
illustrate this.

multi infix:<+>(Int:D \a, Int:D \b) returns Int:D {

nqp::add_I(nqp::decont(a), nqp::decont(b), Int);

}

multi infix:<+>(int $a, int $b) returns int {

nqp::add_i($a, $b)

}

The I suffix is used for big integer ops.

Exercise 6

If time allows, you can explore some of the nqp::ops by adding
support to PHPish for (take them in order, or pick those you’d find

most fun):

Basic numeric relational operators (<, >, ==, etc.)

if/else if/else

while loops

See the exercise sheet for a few hints.

That’s all for today

Today, we’ve covered a lot of ground, starting out with the NQP
language and then building up to how it can be used to implement

a simple compiler.

That’s a good start, but we’re still missing several very important
pieces that both NQP and Rakudo depend heavily on. This

includes objects and the concept of serialization contexts. We’ll
take these on tomorrow.

Any more questions?

